Category Archives: uncertainty

Arctic sea-ice decline erratic as expected

Imagine a ball bouncing down a bumpy hill. Gravity will ensure that the ball will head downwards. But, if the ball hits a bump at a certain angle it might move horizontally or even upwards for a time, before resuming its inevitable downward trajectory. This bouncing ball is an analogy for the behaviour of Arctic sea-ice.

Post based on Swart et al., Nature Climate Change, or see a less technical summary. Continue reading Arctic sea-ice decline erratic as expected

Projected changes of precipitation and temperature extremes

Model projections of heavy precipitation and temperature extremes include large uncertainties. However, disagreement between individual simulations primarily arises from internal variability, whereas models agree remarkably well on the forced signal.

Post based on Fischer et al., 2014, Geophys. Res. Lett.
Continue reading Projected changes of precipitation and temperature extremes

The slowdown zoo

Investigations into the recent observed slower rate of global warming have largely been focussed on variability in the Pacific basin. Climate models also show similar slowdowns focussed in the Pacific (e.g. Meehl et al. 2011).

But, is this the only type of simulated slowdown? How different can regional patterns of temperature change be for the same global change? Continue reading The slowdown zoo

Earth’s energy imbalance

Global surface air temperatures have risen less rapidly over the past 15 years than the previous few decades. The causes of this ‘hiatus’ have been much debated. However, just considering surface temperatures does not tell the whole story – a new analysis using satellite & ocean observations confirms that the Earth is still gaining energy overall. Continue reading Earth’s energy imbalance

Wet get drier (eventually)?

A prevailing paradigm of how rainfall patterns will change on a warming Earth is that the hydrological cycle strengthens causing wet regions to get wetter and dry regions to get drier.

However, this is not always the case: Hawkins, Joshi & Frame (2014) highlight one particular effect – the movement of the Inter-Tropical Convergence Zone (ITCZ) – as a key long-term driver of rainfall changes that do not follow this ‘wet get wetter’ paradigm. Continue reading Wet get drier (eventually)?

Top-of-atmosphere contribution to unforced variability in global temperature

As the attention received by the ‘global warming hiatus’ demonstrates, global mean surface temperature (T) variability on decadal timescales is of great interest to both the general public and to scientists. Here, I will discuss a recently published paper (Brown et al., 2014) that attempts to contribute to this scientific discussion by investigating the impact of unforced (internal) changes in the earth’s top-of-atmosphere (TOA) energy budget on decadal T variability.

Guest post by Patrick Brown (Duke University) Continue reading Top-of-atmosphere contribution to unforced variability in global temperature

On Mora et al.’s Reply

Yesterday saw the publication of our Comment on Mora et al., along with Mora et al.’s Reply and an associated ‘News & Views’ piece. Although the Editors deserve credit for commissioning a News & Views piece on this exchange – a first for a Comment in Nature – there are still errors in Mora et al.’s Reply. A previous post summarised the issues with the original paper, and Doug McNeall also discusses the main issues. Continue reading On Mora et al.’s Reply

Uncertainties in the timing of unprecedented climates

Back in October 2013, Nature published an analysis by Camilo Mora et al. which discussed when ‘unprecedented climates’ would emerge, with a focus on regions of high biodiversity.

The paper was highlighted by Nature with an associated News & Views article and received widespread media attention (e.g. Climate Central, National Geographic, Guardian, Grist, amongst many). The paper was also in the top 100 most discussed papers from 2013 according to Altmetric.

Unfortunately, it has since emerged that the analysis has some serious flaws. A ‘Brief Communication Arising’ (or Comment) has now been published by Hawkins et al. in Nature (freely available for one month), written by a large group which includes several IPCC Lead Authors, from both WG1 and WG2. There is also a ‘Reply’ from Mora et al., and a new News & Views (N&V) piece by Scott Power discussing the continuing disagreement between the author teams. This is the first ever N&V on a Comment in Nature.

This post provides a slightly less technical description of the issues with Mora et al.’s analysis. The errors in Mora et al.’s Reply are summarised in a separate post. The Carbon Brief blog has also produced some videos on the topic. Continue reading Uncertainties in the timing of unprecedented climates

Improving the weather from 96 years ago

Ideally, we would have observations of past weather everywhere for several centuries to reconstruct the state of the atmosphere and learn about its variability. But, we don’t.

Instead, all the observations ever taken would, ideally, be available digitally for everyone to use. But, they aren’t. Many past observations are buried in hand-written journals and logbooks, gathering dust in libraries and archives all over the world. Rescuing this data would be of great benefit to reconstructing past weather, as this example will show. Continue reading Improving the weather from 96 years ago

Comments on the GWPF climate sensitivity report

Guest post by Piers Forster, with comments from Jonathan Gregory & Ed Hawkins

Lewis & Crok have circulated a report, published by the Global Warming Policy Foundation (GWPF), criticising the assessment of equilibrium climate sensitivity (ECS) and transient climate response (TCR) in both the AR4 and AR5 IPCC assessment reports.

Climate sensitivity remains an uncertain quantity. Nevertheless, employing the best estimates suggested by Lewis & Crok, further and significant warming is still expected out to 2100, to around 3°C above pre-industrial climate, if we continue along a business-as-usual emissions scenario (RCP 8.5), with continued warming thereafter. However, there is evidence that the methods used by Lewis & Crok result in an underestimate of projected warming. Continue reading Comments on the GWPF climate sensitivity report

The cascade of uncertainty in climate projections

Climate projections have demonstrated the need to adapt to a changing climate, but have been less helpful (so far) in guiding how to effectively adapt. Part of the reason is the ‘cascade of uncertainty’ going from assumptions about future global emissions of greenhouse gases to what that means for the climate to real decisions on a local scale. Each of the steps in the process contains uncertainty, but which step is the most important? And, how might this be visualised? Continue reading The cascade of uncertainty in climate projections

Sources of uncertainty in CMIP5 projections

The recent IPCC AR5 includes a discussion on the sources of uncertainty in climate projections (Fig. 11.8, section 11.3.1.1), which updates previous analyses using CMIP3 (temperature, precipitation) to the latest CMIP5 simulations. The dominant source of uncertainty depends on lead time, variable and spatial scale. Continue reading Sources of uncertainty in CMIP5 projections

Time of emergence of a warming signal

The ‘signal’ of a warming climate is emerging against a background ‘noise’ of natural internal variability. Both the magnitude of the signal and the noise vary spatially and seasonally. As society and ecosystems tend to be somewhat adapted to natural variability, some of the impacts of any change will be felt when the signal becomes large relative to the noise. So, it is important to note where and when this might occur. Continue reading Time of emergence of a warming signal

Near-term global surface temperature projections in IPCC AR5

The final version of the IPCC AR5 WG1 assessment on the physical basis for climate change has now been published. The AR5 includes, for the first time, a specific chapter and assessment on ‘near-term’ climate change, which covers the period up to 2050, but with a specific focus on the 2016-2035 period.

Continue reading Near-term global surface temperature projections in IPCC AR5

Near-term regional climate: the range of possibilities

What are the possible regional temperature trends over the coming few decades? Globally, on average, there is expected to be a long-term warming, but this is not necessarily true for any particular location or period. What are the probabilities of a local warming or cooling? Continue reading Near-term regional climate: the range of possibilities

Recent slowdown in global surface temperature rise

The Science Media Centre recently held a briefing for journalists on the recent slowdown in global surface temperature rise, and published an accompanying briefing note. The Met Office also released three reports on the topic.

The key points were: (1) recent changes need to be put in longer term context & other climate indicators such as sea level, Arctic sea ice, snow cover, glacier melt etc are also important; (2) the explanation for recent slowdown is partly additional ocean heat uptake & partly negative trends in natural radiative forcing (due to solar changes and small volcanic eruptions) which slightly counteract the positive forcing from GHGs; (3) the quantification of the relative magnitude of these causes is still work in progress; (4) climate models simulate similar pauses. Continue reading Recent slowdown in global surface temperature rise

Comparing global temperature observations and simulations, again

A recent comparison of global temperature observations and model simulations on this blog prompted a rush of media and wider interest, notably in the Daily Mail, The Economist & in evidence to the US House of Representatives. Given the widespread misinterpretation of this comparison, often without the correct attribution or links to the original source, a more complete description & update is needed. Continue reading Comparing global temperature observations and simulations, again

Reliability of regional climate trends

Climate information for the future is usually presented in the form of scenarios: plausible and consistent descriptions of future climate without probability information. This suffices for many purposes, but for the near term, say up to 2050, scenarios of emissions of greenhouse gases do not diverge much and we could work towards climate forecasts: calibrated probability distributions of the climate in the future. Continue reading Reliability of regional climate trends