Category Archives: projections

How not to use daily CMIP5 data for impact studies

A new paper out this week in PLOS Biology uses some CMIP5 simulations of daily mean surface air temperature as part of a larger analysis on the change to future plant growing days. The description of the analysis suggests they have not used the simulations appropriately to arrive at their conclusions. Here I highlight a couple of possible pitfalls in using such data in impact studies. Continue reading How not to use daily CMIP5 data for impact studies

Hiatus delays unprecedented warming rates

Current global temperatures are often discussed in terms of their unprecedented nature when compared to the last few thousand years. An interesting paper in Nature Climate Change by Steven J Smith and colleagues examines the rate of warming projected by the CMIP5 ensemble and suggests that the rate of warming is unprecedented also. However, we note here that their projections are not constrained by the current observations which do not show such strong warming rates at present, and are unlikely to do so in the next few years. Continue reading Hiatus delays unprecedented warming rates

Arctic sea-ice decline erratic as expected

Imagine a ball bouncing down a bumpy hill. Gravity will ensure that the ball will head downwards. But, if the ball hits a bump at a certain angle it might move horizontally or even upwards for a time, before resuming its inevitable downward trajectory. This bouncing ball is an analogy for the behaviour of Arctic sea-ice.

Post based on Swart et al., Nature Climate Change, or see a less technical summary. Continue reading Arctic sea-ice decline erratic as expected

Projected changes of precipitation and temperature extremes

Model projections of heavy precipitation and temperature extremes include large uncertainties. However, disagreement between individual simulations primarily arises from internal variability, whereas models agree remarkably well on the forced signal.

Post based on Fischer et al., 2014, Geophys. Res. Lett.
Continue reading Projected changes of precipitation and temperature extremes

Wet get drier (eventually)?

A prevailing paradigm of how rainfall patterns will change on a warming Earth is that the hydrological cycle strengthens causing wet regions to get wetter and dry regions to get drier.

However, this is not always the case: Hawkins, Joshi & Frame (2014) highlight one particular effect – the movement of the Inter-Tropical Convergence Zone (ITCZ) – as a key long-term driver of rainfall changes that do not follow this ‘wet get wetter’ paradigm. Continue reading Wet get drier (eventually)?

Uncertainties in the timing of unprecedented climates

Back in October 2013, Nature published an analysis by Camilo Mora et al. which discussed when ‘unprecedented climates’ would emerge, with a focus on regions of high biodiversity.

The paper was highlighted by Nature with an associated News & Views article and received widespread media attention (e.g. Climate Central, National Geographic, Guardian, Grist, amongst many). The paper was also in the top 100 most discussed papers from 2013 according to Altmetric.

Unfortunately, it has since emerged that the analysis has some serious flaws. A ‘Brief Communication Arising’ (or Comment) has now been published by Hawkins et al. in Nature (freely available for one month), written by a large group which includes several IPCC Lead Authors, from both WG1 and WG2. There is also a ‘Reply’ from Mora et al., and a new News & Views (N&V) piece by Scott Power discussing the continuing disagreement between the author teams. This is the first ever N&V on a Comment in Nature.

This post provides a slightly less technical description of the issues with Mora et al.’s analysis. The errors in Mora et al.’s Reply are summarised in a separate post. The Carbon Brief blog has also produced some videos on the topic. Continue reading Uncertainties in the timing of unprecedented climates

Comments on the GWPF climate sensitivity report

Guest post by Piers Forster, with comments from Jonathan Gregory & Ed Hawkins

Lewis & Crok have circulated a report, published by the Global Warming Policy Foundation (GWPF), criticising the assessment of equilibrium climate sensitivity (ECS) and transient climate response (TCR) in both the AR4 and AR5 IPCC assessment reports.

Climate sensitivity remains an uncertain quantity. Nevertheless, employing the best estimates suggested by Lewis & Crok, further and significant warming is still expected out to 2100, to around 3°C above pre-industrial climate, if we continue along a business-as-usual emissions scenario (RCP 8.5), with continued warming thereafter. However, there is evidence that the methods used by Lewis & Crok result in an underestimate of projected warming. Continue reading Comments on the GWPF climate sensitivity report

The cascade of uncertainty in climate projections

Climate projections have demonstrated the need to adapt to a changing climate, but have been less helpful (so far) in guiding how to effectively adapt. Part of the reason is the ‘cascade of uncertainty’ going from assumptions about future global emissions of greenhouse gases to what that means for the climate to real decisions on a local scale. Each of the steps in the process contains uncertainty, but which step is the most important? And, how might this be visualised? Continue reading The cascade of uncertainty in climate projections

Updates to comparison of CMIP5 models & observations

As 2013 is nearly over, it is time for a short update to the comparisons of CMIP5 models and observations for global mean surface air temperatures. Part of the motivation for an update is the Cowtan & Way paper on spatial coverage biases in HadCRUT4, which has been given prominent attention in blogs and the media, notably the front page of The Independent. Continue reading Updates to comparison of CMIP5 models & observations

Effects of recent observed vs RCP forcings

The recent global temperature hiatus has been explained by the IPCC AR5 as partly due to natural radiative forcings (solar & volcanic effects) and internal variability. Recently, other effects such as CFCs and biases in the observational coverage have also been suggested, as well as continuing uncertainty about the regional effects of aerosol forcings. When comparing simulations and observations, the CMIP5 simulations tend to use projected forcings rather than observed forcings after 2005. But what effect does this have? Continue reading Effects of recent observed vs RCP forcings

Sources of uncertainty in CMIP5 projections

The recent IPCC AR5 includes a discussion on the sources of uncertainty in climate projections (Fig. 11.8, section 11.3.1.1), which updates previous analyses using CMIP3 (temperature, precipitation) to the latest CMIP5 simulations. The dominant source of uncertainty depends on lead time, variable and spatial scale. Continue reading Sources of uncertainty in CMIP5 projections

Time of emergence of a warming signal

The ‘signal’ of a warming climate is emerging against a background ‘noise’ of natural internal variability. Both the magnitude of the signal and the noise vary spatially and seasonally. As society and ecosystems tend to be somewhat adapted to natural variability, some of the impacts of any change will be felt when the signal becomes large relative to the noise. So, it is important to note where and when this might occur. Continue reading Time of emergence of a warming signal

Near-term global surface temperature projections in IPCC AR5

The final version of the IPCC AR5 WG1 assessment on the physical basis for climate change has now been published. The AR5 includes, for the first time, a specific chapter and assessment on ‘near-term’ climate change, which covers the period up to 2050, but with a specific focus on the 2016-2035 period.

Continue reading Near-term global surface temperature projections in IPCC AR5

Comparing global temperature observations and simulations, again

A recent comparison of global temperature observations and model simulations on this blog prompted a rush of media and wider interest, notably in the Daily Mail, The Economist & in evidence to the US House of Representatives. Given the widespread misinterpretation of this comparison, often without the correct attribution or links to the original source, a more complete description & update is needed. Continue reading Comparing global temperature observations and simulations, again

Reliability of regional climate trends

Climate information for the future is usually presented in the form of scenarios: plausible and consistent descriptions of future climate without probability information. This suffices for many purposes, but for the near term, say up to 2050, scenarios of emissions of greenhouse gases do not diverge much and we could work towards climate forecasts: calibrated probability distributions of the climate in the future. Continue reading Reliability of regional climate trends

Climate uncertainty: moving from ‘what’ to ‘when’

Update (23/10/11): The full article has now been published in Nature Climate Change

Climate projections (such as from the IPCC) usually consider the question of “what will happen to our future climate”. But, this question may be more informative if it is changed to “when will it happen”? Continue reading Climate uncertainty: moving from ‘what’ to ‘when’